09 Variables aléatoires

09-01 Séries statistiques

Définitions et notations

On étudie une **série statistique** dont le **caractère** prend *p* **valeurs** différentes.

Valeurs	X ₁	•••	X_p
Effectifs	n_1	•••	n_p
Fréquences	f_1	•••	$f_{\scriptscriptstyle p}$

On note *N* l'effectif total de la série statistique.

La moyenne \bar{x} de la série vaut $\bar{x} = \frac{1}{N} \sum_{i} n_{i} x_{i}$ ou encore $\bar{x} = \sum_{i} f_{i} x_{i}$

La variance V de la série statistique est la moyenne des carrés des écarts à la moyenne.

L'écart-type σ de la série statistique est la racine carrée de la variance.

Exemple

On considère la série :

10	13	12	10	14	11	13	13	12	12
11	14	11	12	13	12	11	13	14	13

Valeurs	10	11	12	13	14
Effectifs	2	4	5	6	3
Fréquences	0,1	0,2	0,25	0,3	0,15

La moyenne vaut : $\bar{x} = (10 \times 2 + 11 \times 4 + 12 \times 5 + 13 \times 6 + 14 \times 3)/20 = 12,2$

Ou encore : $\bar{x} = 10 \times 0.1 + 11 \times 0.2 + 12 \times 0.25 + 13 \times 0.3 + 14 \times 0.15 = 12.2$

La variance vaut : $V = 2.2^2 \times 0.1 + 1.2^2 \times 0.2 + 0.2^2 \times 0.25 + 0.8^2 \times 0.3 + 1.8^2 \times 0.15 = 1.46$

On a alors : $\sigma = \sqrt{1,46} \approx 1,2$

Remarques

- L'écart-type est un **indicateur de dispersion** qui prend un sens lorsqu'il est comparé à un autre écart-type. Plus l'écart-type d'une série est grand, plus cette série est hétérogène.
- La lettre grecque sigma majuscule Σ est utilisée pour la somme.
 La lettre grecque sigma minuscule σ est utilisée pour la « standard deviation ».

Propriété

La variance est la moyenne des carrés moins le carré de la moyenne : $V = \sum f_i x_i^2 - \bar{x}^2$

Exemple

Application à l'exemple précédent : $V = 10^2 \times 0.1 + 11^2 \times 0.2 + 10^2 \times 0.25 + 13^2 \times 0.3 + 14^2 \times 0.15 - 12.2^2 = 1.46$

09 Variables aléatoires

09-01 Séries statistiques

Définitions et notations

On étudie une série statistique dont le caractère prend p valeurs différentes.

Valeurs	X ₁	•••	X _p
Effectifs	n_1		$n_{\scriptscriptstyle p}$
Fréquences	f_1		$f_{ ho}$

On note N l'effectif total de la série statistique.

La moyenne \bar{x} de la série vaut $\bar{x} = \frac{1}{N} \sum_{i} n_{i} x_{i}$ ou encore $\bar{x} = \sum_{i} f_{i} x_{i}$

La variance V de la série statistique est la moyenne des carrés des écarts à la moyenne.

L'écart-type σ de la série statistique est la racine carrée de la variance.

Exemple

On considère la série :

10 13 12 10 14 11 13 13 12 12 11 12 13 12 11 13 14 13 11 14

Valeurs			
Effectifs			
Fréquences			

La moyenne vaut :

Ou encore: La variance vaut : V = =

On a alors: σ = ≈

Remarques

•	L'écart-type est un indicateur de qui prend un sens lorsqu'il est comparé à un autre écart-type.
	Plus l'écart-type d'une série est grand, plus cette série est

La lettre grecque sigma majuscule est utilisée pour la somme. La lettre grecque sigma minuscule est utilisée pour la « standard deviation ».

Propriété

La variance est la moyenne des carrés moins le carré de la moyenne : $V = \sum f_i x_i^2 - \bar{x}^2$

Exemple

Application à l'exemple précédent : V =