Bases du plan 02-05

Propriété

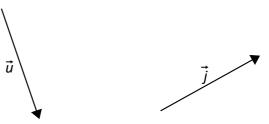
Soient \vec{i} et \vec{j} deux vecteurs non colinéaires.

Quel que soit le vecteur \vec{u} , il existe un couple unique de réels (a;b) tel que $\vec{u}=a\vec{i}+b\vec{j}$.

Exemple

Dans la représentation ci-contre, on a :

$$\vec{u} = \dots \vec{i} \dots \vec{j}$$



Définitions et notations

Deux vecteurs non colinéaires \vec{i} et \vec{j} forment une base du plan notée (\vec{i} , \vec{j}).

On appelle **coordonnées de \vec{u}** dans la base (\vec{i}, \vec{j}) le couple de réels (x; y) tel que $\vec{u} = x \vec{i} + y \vec{j}$.

Cela se note $\vec{u}(x;y)$ ou $\vec{u}\begin{pmatrix} x \\ y \end{pmatrix}$.

Si les directions de \vec{i} et \vec{j} forment un angle droit, alors la base (\vec{i} , \vec{j}) est **orthogonale**.

Si \vec{i} et \vec{j} ont la même norme alors la base (\vec{i} , \vec{j}) est **normée**.

Si la base (\vec{i}, \vec{j}) est orthogonale et normée alors elle est orthonormée (ou orthonormale).

Exemple

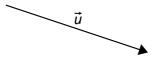
Dans le plan muni de la base (\vec{i}, \vec{j}) ci-contre, on a :

$$\vec{u}$$

$$\vec{v}$$

$$\vec{i}$$
 $\left(\right)$

$$ec{v}\left(egin{array}{c} ec{i} \left(egin{array}{c} ec{j} \left(egin{array}{c} \egin{array}{c} ec{j} \left(egin{array}{c} \egin{array}{c} \egin{a$$



Propriété

Deux vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{u'} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont égaux si et seulement si $\begin{cases} x = x' \\ y = y' \end{cases}$.