04-03 La résolution par combinaison

Propriété

Si
$$\begin{cases} A = B \\ \text{et} & \text{alors } A + C = B + D. \\ C = D \end{cases}$$

Remarque

Avant d'effectuer la somme de deux égalite	és, on peut les multiplier chacune par un nombre différent.
On parle alors de	d'égalités.

Méthode

Considérons le système		$\begin{cases} 2 x - 5 y + 1 \\ 3 x + 4 y - 2 \end{cases}$	=0 (1) 0 0 0
①×3:			

②×(-2):		• • • • • •			 • • • • • •	
On les som	ne :		• • • • •	• • • • • •	 • • • • • • •	
D'où						

D 00	
①×4:	
②×5:	
On les somme :	
D'où	

La solution du système est