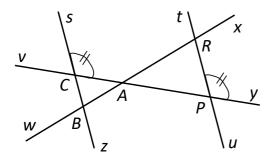
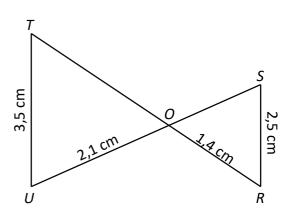

Énoncés


Exercice 11

Démontrer que l'on est dans une configuration de Thalès et écrire les rapports égaux.

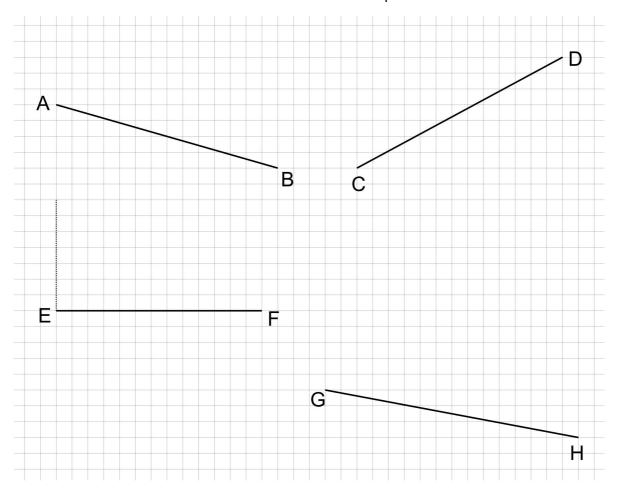

b]

Exercice 12

Les droites (RT) et (US) sont sécantes au point O. (RS) et (UT) sont deux droites parallèles.

Calculer OT et OS.

Exercice 13


Soit EFG un triangle tel que EF = 5 cm; EG = 4 cm et FG = 3,3 cm. On appelle M le point de [EG] tel que EM = 6 cm. La droite parallèle à (FG) passant par le point M coupe [EF] en N.

- **1.** Construire la figure.
- 2. Calculer EN et MN.

éducmat Page 1 sur 4

Exercice 14


À l'aide d'une règle non graduée et sans aucun calcul, scinder les segments ci-dessous en sept parts égales. Laisser les traits de construction afin de rendre le raisonnement explicite.

Exercice 15

Sur le dessin ci-contre, les droites (d) et (d') sont parallèles.

1. Sur la droite (d), placer deux points M_1 et M_2 de part et d'autre de A tels que $AM_1 = AM_2 = 2$ cm. Sur la droite (d') placer un point N tel que BN = 3 cm.

- 2. Soit M le point d'intersection de (AB) et (M_1N). Déterminer $\frac{MA}{MB}$
- **3.** Soit M' le point d'intersection de (AB) et (M_2N) . Déterminer $\frac{AM'}{BM'}$.
- 4. Tracer un segment [CD]

 Construire les points M de la droite (CD) tels que $\frac{MC}{MD} = \frac{5}{8}$.

Corrigés

Exercice 11

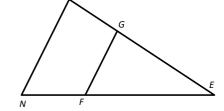
a] Comme (BC) et (PR) sont perpendiculaires à la même droite (AC) alors (BC) est parallèle à (PR). Comme les parallèles (BC) et (PR) coupent les droites (CR) et (BP) sécantes en A alors on est dans une configuration de Thalès.

Par conséquent, on a
$$\frac{AC}{AR} = \frac{AB}{AP} = \frac{BC}{PR}$$

b] Comme les angles correspondants \widehat{sCA} et \widehat{RPy} sont égaux alors (BC) || (RP). Comme les parallèles (BC) et (PR) coupent les droites (CP) et (BR) sécantes en A alors on est dans une configuration de Thalès.

Par conséquent, on a
$$\frac{AC}{AP} = \frac{AB}{AR} = \frac{BC}{PR}$$
.

Exercice 12

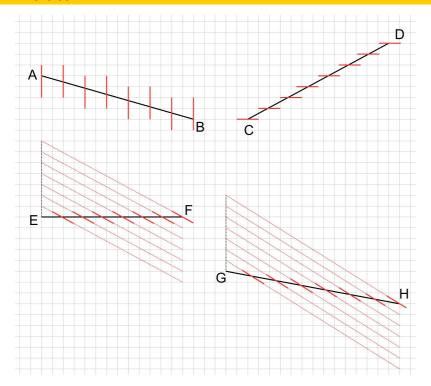

Comme les parallèles (*TU*) et (*RS*) coupent les droites (*TR*) et (*US*) sécantes en *O*, alors on est dans une configuration de Thalès. Par conséquent on a $\frac{OT}{RO} = \frac{OU}{OS} = \frac{TU}{RS}$ donc $\frac{OT}{1,4} = \frac{2,1}{OS} = \frac{3,5}{2,5}$.

On a
$$\frac{OT}{1.4} = \frac{3.5}{2.5}$$
 donc $OT = \frac{1.4 \times 3.5}{2.5}$. D'où **OT=1.96 cm**.

On a
$$\frac{2,1}{OS} = \frac{3,5}{2.5}$$
 donc $OS = \frac{2,5 \times 2,1}{3.5}$. D'où $OS = 1,5$ cm.

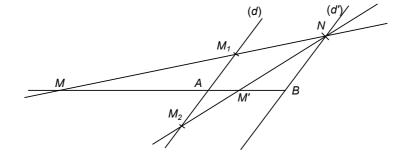
Exercice 13

- 1. Voir ci-contre.
- **2.** Comme les parallèles (GF) et (MN) coupent les droites (GM) et (NF) sécantes en E, alors on est dans une configuration de Thalès.



Par conséquent, on a
$$\frac{EM}{FG} = \frac{EN}{FF} = \frac{MN}{GF}$$
 donc $\frac{6}{4} = \frac{EN}{5} = \frac{MN}{3.3}$

On a
$$\frac{6}{4} = \frac{EN}{5}$$
 donc $EN = \frac{6 \times 5}{4}$. D'où **EN = 7,5 cm**.


On a
$$\frac{6}{4} = \frac{MN}{3.3}$$
 donc $MN = \frac{6 \times 3.3}{4}$. D'où $MN = 4.95$ cm.

Exercice 14

Exercice 15

1. Voir ci-contre.

2. Comme les parallèles (d) et (d') coupent les droites (M_1N) et (AB) sécantes en M, alors on a :

$$\frac{MA}{MB} = \frac{AM_1}{BN}$$
 donc $\frac{MA}{MB} = \frac{2}{3}$.

3. Comme les parallèles (d) et (d') coupent les droites (M_2N) et (AB) sécantes en M', alors on a :

$$\frac{M'A}{M'B} = \frac{AM_2}{BN} \text{ donc } \frac{M'A}{M'B} = \frac{2}{3}.$$

4. On commence par tracer deux droites parallèles (*d*) et (*d'*) passant par *C* et *D*.

On place les points M_1 et M_2 sur (d) à 5 cm de C et un point N sur (d') tel que DN=8 cm.

Les points de la droite (*CD*) tels que $\frac{MC}{MD} = \frac{5}{8}$

que l'on nomme M et M', se situent à l'intersection de (CD) avec (M_1N) et (M_2N) .